TRITERPENE GLYCOSIDES OF Zygophyllum eichwaldii. III. STRUCTURE OF ZYGOEICHWALOSIDE G

S. A. Sasmakov, ¹ Zh. M. Putieva, ¹ V. V. Kachala, ² Z. Saatov, ¹ and A. S. Shashkov ²

UDC 547.918:547.914.4

The new triterpene glycoside zygoeichwaloside G was isolated from the roots of Zygophyllum eichwaldii C.A.M. by column chromatography. Acid hydrolysis and PMR and ^{13}C NMR spectroscopy using two-dimensional COSY, TOCSY, and HSQC and analysis of HMBC and ROESY spectra established that glycoside G is $19-\alpha$ -hydroxyursolic acid $3-O-\alpha$ -L-(2-O-sulfo)-arabinopyranoside.

Key words: *Zygophyllum eichwaldii* C.A.M., triterpene glycoside, zygoeichwaloside G, 19- α -hydroxyursolic acid, pomolic acid 3-O- α -L-(2-O-sulfo)-arabinopyranoside.

In continuation of studies of triterpene glycosides of $Zygopyllum \ eichwaldii \ C.A.M.$ (Zygophyllaceae) [1, 2], we isolated the glycoside $Zygoeichwaloside \ G$ (1) by column chromatography.

Acid hydrolysis decomposes 1 into pomolic acid (2) and arabinose.

The ¹³C NMR spectrum contains 35 different signals, indicating that **1** is a monoside. This conclusion is confirmed by the presence of signals for anomeric H (5.16 ppm) and carbon (103.59 pm) atoms in the PMR and ¹³C NMR, respectively. The C atom of the COOH appears at 180.68 ppm, indicating that it is free. Arabinose is bound to one of the hydroxyls in the genin. The genin part of the ¹³C NMR spectrum of **1** contains a signal at 89.41 ppm that belongs to C-3 and indicates that the hydroxyl on this C atom is glycosylated. Therefore, arabinose is located on the C-3 hydroxyl of pomolic acid.

HMBC and ROESY spectra confirm this conclusion. A correlation in them is seen between the anomeric proton (H-1) of arabinose and C-3 and H-3 of the aglycon. The spin—spin coupling constant (5 Hz) corresponds to the α -configuration for the glycoside.

The same structure was found for glycoside C (3), which we isolated earlier from the plant. Comparison of the PMR and ¹³C NMR spectra of 1 and 3 shows that they have the same aglycon. However, the chemical shifts of the protons and C atoms belonging to arabinose differ significantly (Table 1).

1: $R = \alpha - L - 2 - O - SO_3H - Arap$;

2: R = H;

3: $R = \alpha - L - Arap$

¹⁾ S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (99871) 120 64 75; 2) N. D. Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, B-334, Leninskii pr., 47. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 451-452, November-December, 2002. Original article submitted November 11, 2002.

TABLE 1. Chemical Shifts in PMR and 13 C NMR Spectra of Zygoeichwalosides G (1) and C (3) (δ , ppm, 0 = TMS, C_5D_5N)

Atom	Compound					Compound			
	1		3		Atom	1		3	
	¹³ C	¹ H	¹³ C	¹ H		¹³ C	¹ H	¹³ C	¹ H
1	38.72	1.48; 0.84	38.52	1.53; 0.96	19	72.75	4.96(OH)	72.41	5.10(OH)
2	26.28	2.05; 1.78	26.38	2.19; 1.92	20	42.40	1.50	42.08	1.53
3	89.41	3.23	88.48	3.35	21	26.97	2.10; 1.35	26.65	2.10; 1.33
4	39.47	-	39.26	-	22	38.52	2.16; 2.05	38.22	2.19; 2.13
5	55.82	0.77	55.64	0.86	23	27.19	1.30	27.95	1.29
6	18.65	1.47; 1.27	18.34	1.53; 1.32	24	16.79	1.03	16.60	0.97
7	33.54	1.55; 1.32	33.23	1.76; 1.37	25	15.46	0.82	15.23	0.89
8	40.37	-	40.07	-	26	17.19	1.06	16.89	1.10
9	47.67	1.76	47.42	1.85	27	24.71	1.73	24.40	1.76
10	37.00	-	36.72	-	28	180.68	-	180.36	-
11	24.03	2.04; 1.96	23.71	2.09; 2.09	29	28.35	1.44	26.86	1.46
12	128.05	5.58	127.73	5.61	30	16.90	1.13	16.48	1.14
13	139.99	-	139.65	-		lpha-L-Ara p			
14	42.133	-	41.81	-	1'	103.59	5.16	107.23	4.78
15	29.31	2.32; 1.28	29.02	2.34; 1.33	2'	77.68	5.40	72.63	4.45
16	26.44	3.14; 2.06	26.10	3.17; 2.1	3 ′	73.08	4.55	74.34	4.18
17	48.33	-	48.00	-	4 ′	67.58	4.37	69.23	4.34
18	54.65	3.05	54.31	3.07	5 ′	68.91	4.29; 3.79	66.43	4.34; 3.84

The two-dimensional methods COSY, TOCSY, and HSQC established that arabinose has in the 2-position a substituent that does not contain C atoms. However, it is rather electronegative. This causes characteristic shifts of the signals for C-1 and C-3 of the sugar. Based on the magnitude of the shifts compared with the unsubstituted unit, we think that the substituent is an SO_3H group [2]. This was confirmed by mass spectrometry. The electrospray mass spectrum exhibits a peak for a molecular ion with m/z 683.7, which corresponds with $C_{35}H_{56}O_{11}S$.

Thus, zygoeichwaloside G is the new compound 19- α -hydroxyursolic (pomolic) acid 3-O- α -L-(2-O-sulfo)-arabinopyranoside

EXPERIMENTAL

For general comments, see the literature [2].

Mass spectra were recorded in a Finnigan LCQ electrospray instrument.

Isolation of Zygoeichwaloside G (1). Fractions enriched in **1** were rechromatographed over a KSK silica-gel column using $CHCl_3$ — CH_3OH — H_2O 65:28:5. Yield 20 mg of amorphous compound.

Acid Hydrolysis. Compound **1** (5 mg) was hydrolyzed by H_2SO_4 (5%) at 95°C for 1 h and cooled. Extraction of the hydrolysate with CHCl₃ afforded the genin, which was identified by TLC using CHCl₃— C_2H_5OH (25:1) as pomolic acid (19- α -hydroxyursolic acid). Arabinose was detected in the aqueous layer by TLC using BuOH—MeOH— H_2O (5:3:1) after neutralization by BaCO₃ and evaporation to the minimal volume.

REFERENCES

- 1. S. A. Sasmakov, Zh. M. Putieva, Z. Saatov, V. V. Kachala, and A. S. Shashkov, Khim. Prir. Soedin., 79 (2001).
- 2. S. A. Sasmakov, Zh. M. Putieva, Z. Saatov, V. V. Kachala, and A. S. Shashkov, Khim. Prir. Soedin., 294 (2001).